sábado, 17 de agosto de 2019

MASSA DE GRACELI =  POTENCIAIS X ENERGIA

X



TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

 +

   +   

  ,      +   

  +

+     


X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

    X =
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Massa é um conceito utilizado em ciências naturais. Em particular, a massa é frequentemente associada ao peso dos objetos. Esta associação não se mostra na maioria das vezes, entretanto, correta, ou quando correta, não se mostra completamente elucidativa. Em acordo com o paradigma científico moderno, o peso de um objeto resulta da interação gravitacional entre sua massa e um campo gravitacional: ao passo que a massa é parte integrante da explicação para o peso, ela sozinha não constitui a explicação completa. Os trajes espaciaisdos astronautas, quando usados aqui na Terra, parecem consideravelmente mais pesados do que quando usados na superfície da Lua, contudo suas massas permanecem exatamente as mesmas.
É comum também a associação de massa ao tamanho e forma de um objeto. Massa realmente toma parte na explicação para o tamanho dos objetos (densidade), mas não constitui a explicação correta ou completa.
corpo humano é equipado com vários sentidos com os quais estabelecemos a compreensão do mundo que nos cerca. Em primeira instância é às sensações que eles nos fornecem que naturalmente associamos certos conceitos e definições, a citar os conceitos intuitivos de temperatura, tamanho, resistência, peso, massa, e outros. O conceito intuitivo de massa que desenvolvemos encontra-se intimamente ligado a eles. Entretanto sabe-se hoje que nossos sentidos são mestres em nos enganar - quem nunca viu uma ilusão de ótica? - e que eles também não têm grande precisão. Se um punhado de balas for colocado em uma de suas mãos, e se uma for retirada do topo da pilha, você certamente não dará por falta desta se confiar apenas na sensação do peso que seu tato lhe confere.[1]
Como se deduz, para a correta compreensão do mundo que nos cerca não podemos confiar em nossos sentidos. Para alcançá-la devemos confiar em algo mais avançado, a saber, no poder de abstração que temos e em informações fornecidas por aparelhos especificamente projetados para obtê-las. Dentro deste contexto, que culminou no que chamamos hoje ciência, o conceito abstrato de massa evoluiu juntamente com a nossa compreensão do mundo natural, mas mesmo nos dias de hoje mostra-se essencial ainda na forma com a qual se consolidou pela primeira vez: o primeiro conceito científico de massa com o qual nos deparamos na escola - o de massa como medida da inércia, da maior ou menor oposição que um corpo impõe à mudança em seu estado de movimento (F=m.a) - ainda é o fornecido pela mecânica newtoniana, mas a partir dele podemos hoje encontrar no mínimo sete definições diferentes de massa, e em verdade, dentro da teoria mais geral para o estudo da dinâmica dos corpos (a Relatividade Geral), podemos até mesmo não encontrar uma definição satisfatória para massa.[2]
Os conceitos científicos de massa, que diferem do conceito também científico de quantidade de matéria[3], sempre se mostram de alguma forma associados ao conceito de inércia, e mesmo em relatividade, onde energia e massa mantêm, em acordo com a famosa equação E = mc², íntima relação, esta associação está presente: não só a matéria mas também a energia apresenta inércia. Entretanto, apesar de muito bem definida dentro de cada área de estudo onde aparece, "explicar" a massa não é uma coisa muito simples, e atualmente existem algumas teorias que tentam elucidar nas origens o que é massa.

    Definição geral de massa[editar | editar código-fonte]

    Relação de dispersão para uma partícula clássica. Em todos os modelos dinâmicos o momento P e a energia E são definidos de forma a satisfazerem leis gerais de conservação.
    Os conceitos físicos de força e massa surgem em teorias ou modelos destinados a estabelecer a dinâmica em sistemas compostos ou por entes semelhantes ou por entes de natureza às vezes bem distintas. Nestes modelos sempre figuram também dois outros conceitos fundamentais, o conceito de momento e o conceito de energia. Os conceitos de energia e momento são importantes porque suas definições se dão de forma que energia e momento sempre obedeçam a leis gerais de conservação, leis estas decorrentes da existência de regras naturais de relacionamento entre entes e/ou sistemas que são, em princípio, estáveis e muito bem estabelecidas.[4] Neste contexto, energia e momento guardam íntima relação, e um ente físico é caracterizado pela sua relação de dispersão, um gráfico ou função que explicita a relação existente entre o momento e a energia para este ente. Dois entes físicos com a mesma natureza física têm relações de dispersão semelhantes. Como exemplo, as partículas clássicas dentro da mecânica de Newton têm energias que dependem dos quadrados de seus momentos:  (esta relação é encontrada de forma explicita na mecânica hamiltoniana: ). Já os fótons, partículas definidas no âmbito da mecânica quântica, têm energias linearmente dependentes de seus momentos: .
    É com base na relação de dispersão que se estabelece a definição geral de massa:
    A massa de um dado ente físico corresponde ao inverso da derivada segunda de sua energia em relação ao seu momento,
    X



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Na oportunidade cita-se também a definição de força:
    A força que atua em um ente corresponde à derivada de seu momento em relação ao tempo.
    X



    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Definições mais intuitivas de massa, que não exigem a princípio conhecimentos avançados em cálculo integral e diferencial, podem ser derivadas desta definição formal quando no contexto de um modelo dinâmico particular.



    fórmula de Rydberg (fórmula de Rydberg-Ritz) ou equação de Rydberg é utilizada em física atômica para determinar todo o espectro da luz emitida pelo hidrogênio, posteriormente estendida para uso com qualquer elemento pelo uso do princípio de combinação de Rydberg-Ritz.[1][2]
    O espectro é o conjunto de comprimentos de onda dos fótons emitidos quando o elétron pula entre níveis de energia discretos, "camadas" ao redor do átomo de um certo elemento químico. A descoberta posteriormente promoveu motivação para a criação da física quântica.[3]
    A fórmula foi inventada pelo físico sueco Johannes Rydberg e apresentada em 5 de Novembrode 1888.

      Fórmula de Rydberg para o hidrogênio[editar | editar código-fonte]

      X



      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      Onde
       é o comprimento de onda da luz emitida no vácuo,[1]
       é a constante de Rydberg para o hidrogênio,[4]
       and  são inteiros tais que .
      Deixando  igual a 1 e fazendo  percorrer de 2 até o infinito, as linhas de espectro conhecidas como série de Lyman convergem em 91 nm. Da mesma maneira:
      NomeConverge para
      1Série de Lyman91 nm
      2Série de Balmer365 nm
      3Série de Paschen821 nm
      4Série de Brackett1459 nm
      5Série de Pfund2280 nm
      6Série de Humphreys3283 nm
      Apenas a série de Balmer está na faixa visível do espectro luminoso. A série de Lyman está na faixa ultravioleta, e as séries de Paschen, Brackett, Pfund, e Humphreys, na infravermelha.

      Fórmula de Rydberg para qualquer elemento semelhante ao hidrogênio[editar | editar código-fonte]

      A fórmula acima pode ser estendida para qualquer elemento químico semelhante ao hidrogênio.[1][4]
      X



      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D






      Em Físicaespectro ou espetro do átomo de hidrogénio é o conjunto de .l, do eira que ele coloca no anos com comprimentos de onda presentes na luz que o átomo de hidrogénio é capaz de emitir quando pula de níveis de energia. O modelo mais simples de átomo de hidrogénio é representado pelo átomo de Bohr.[1][2]
      Esse espectro de luz é composto de comprimentos de onda discretos, portanto seus valores são expressos pela Fórmula de Rydberg:[3]
      X


      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D

      Onde
       é o comprimento de onda da luz emitida no vácuo,
       é a constante de Rydberg para o hidrogénio,
       e  são inteiros tais que ;
      Deixando  igual a 1 e fazendo  percorrer de 2 até o infinito, as linhas de espectro conhecidas como série de Lyman convergem em 91nm. Da mesma maneira:
      Principais séries do espectro do átomo de hidrogénio
      NomeConverge para
      1Série de Lyman91nm
      2Série de Balmer365nm
      3Série de Paschen821nm
      4Série de Brackett1459nm
      5Série de Pfund2280nm
      6Série de Humphreys3283nm
      onde
       é o comprimento de onda da luz emitida no vácuo;
       é a constante de Rydberg para esse elemento;
       é o número atômico;
       e  são inteiros tais que .
      É importante notar que esta fórmula pode ser aplicada apenas para elementos semelhantes ao hidrogênio, também chamados átomos hidrogênicos, isto é,.átomos com apenas um elétron na orbital mais externo. Exemplos destes incluem o  etc.[5]